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Forming accurate mental models that align with the actual behavior of an AI system is critical for successful
user experience and interactions. One way to develop mental models is through information shared by other
users. However, this social information can be inaccurate and there is a lack of research examining whether
inaccurate social information influences the development of accurate mental models. To address this gap, our
study investigates the impact of social information accuracy on mental models, as well as whether prompting
users to validate the social information can mitigate the impact. We conducted a between-subject experiment
with 39 crowdworkers where each participant interacted with our AI system that automates a workflow
given a natural language sentence. We compared participants’ mental models between those exposed to
social information of how the AI system worked, both correct and incorrect, versus those who formed mental
models through their own usage of the system. Specifically, we designed three experimental conditions: 1)
validation condition that presented the social information followed by an opportunity to validate its accuracy
through testing example utterances, 2) social information condition that presented the social information only,
without the validation opportunity, and 3) control condition that allowed users to interact with the system
without any social information. Our results revealed that the inclusion of the validation process had a positive
impact on the development of accurate mental models, especially around the knowledge distribution aspect of
mental models. Furthermore, participants were more willing to share comments with others when they had
the chance to validate the social information. The impact of inaccurate social information on altering user
mental models was found to be non-significant, while 69.23% of participants incorrectly judged the social
information accuracy at least once. We discuss the implications of these findings for designing tools that
support the validation of social information and thereby improve human-AI interactions.
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Fig. 1. In the validation condition, we designed a main task containing a series of steps: 1) a participant
evaluated the accuracy of a given piece of social information (e.g., User A’s comment); 2) validated the
social information accuracy by testing various sample utterances; 3) made a final judgment about the social
information accuracy, edited the given social information, and rated how much they were willing to share
their revised comment.

1 Introduction
With abundant social information streams available, including social media, online communities, and
blogs, people are more widely and actively sharing how they use, interact with, and understand AI
systems, which essentially represent their mental models. There is evidence that others consuming
this social information, or shared mental models, are influenced by it through ‘social learning’ [32,
63, 70]. Forming accurate mental models that align with the actual system behavior is critical to
improving user experience and task performance [25, 27]. Social information, on the other hand,
can be inaccurate, due to various reasons, including limited experiences or outdated sources [10, 13].
Consequently, there exists a gap in understanding how this inaccurate social information impacts
individuals’ mental models.

Previously, there has been research conducted on two important topics: identifying social influ-
ence in understanding and using AI systems [63, 65], and investigating ways to foster accurate user
mental models [27, 51]. Our research aims to integrate these two research streams by examining
the impact of social information accuracy in shaping accurate mental models of an AI system.
Additionally, whether and how we can support users in validating the accuracy of shared mental
models is still an open question. There has been an emergence of tools that aid users in interpreting
how their input influenced the system output [7, 37, 49, 66] and HCI research understanding their
impact [40, 47, 53, 67]. However, no prior research has explored how validating the accuracy of
information shared by others affects user mental models. Building on these studies, we investigated
the impact of validating social information on user mental models and identify strategies people
used for validation.

In this study, we focused on an AI system that generates a task workflow given a natural language
utterance. We used a dataset from a prior study that collected social information which describes
correct or incorrect shared mental models about how the system works. We conducted a between-
subject experiment involving 39 crowdworkers who were randomly assigned to one of the three
conditions: 1) a validation condition, where participants received and evaluated social information
followed by an opportunity to validate its accuracy through testing various utterances; 2) a social
information condition, where participants received and evaluated social information but without
the validation opportunity; and 3) a control condition, where participants wrote about their own
mental models after completing a goal-oriented task, without receiving social information or having
the validation opportunity. For further elaboration, we outline the main tasks in the validation
condition in Fig. 1, with additional details provided in Fig. 3.

Using survey responses, we measured participants’ mental models of the system in three dimen-
sions [27], global behavior (how the system works overall), local behavior (how the system makes
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an individual decision), and knowledge distribution (what the system knows and how it uses the
knowledge) types. We also measured their performance on the final task and their editing strategies
of the social information through system logs. To preview our key results, we found that 69.23% of
participants in treatment conditions incorrectly judged the social information accuracy at least
once. When participants were given a chance to validate the social information accuracy, their
mental models improved significantly and boosted their confidence in their accuracy judgments.
Participants also became more willing to share the comments they had collaboratively written
after validation, compared to those who didn’t get the validation experience. Overall, our results
highlight the importance of empowering individuals to critically and empirically evaluate social
information to foster more accurate mental models of AI systems with confidence. This, in turn,
enables sharing of accurate social information, benefiting the broader user community as a result.

Our contributions are threefold: first, our empirical findings show that validating social informa-
tion improves mental models, especially in knowledge distribution type. Second, we found that
inaccurate social information had a non-significant impact on mental models. Third, we identified
various strategies participants used to collaboratively build shared mental models. We offer design
implications on how to assist people to develop and share accurate mental models, and thereby
improve the quality of social information and human-AI interactions.

2 Related Work
Our research was primarily informed by prior work in three different topical areas: mental models
in human-AI interactions, social information around AI systems, and natural language automation
systems.

2.1 Mental Models in Human-AI Interactions
A mental model is defined as a user’s knowledge of the components of a system, their interconnection,
and the processes that change the components, the knowledge that forms the basis for users being able
to construct reasonable actions, and explanations about why a set of actions is appropriate [18]. A
mental model is different from the conceptual model [55] which is the scientist’s or developer’s
understanding of the system. Gero et al. identified three key components in a conceptual model
that are global behavior, local behavior, and knowledge distribution types [27]. An accurate mental
model that aligns with the conceptual model of an AI system improves user experience [41],
decision-making [9], and task performance [18, 27].

However, misaligned mental models are common [13, 42] and can be hard to change [23, 73]. Nor-
man stated that mental models are usually inaccurate in a number of ways, including contradictory,
erroneous, and unnecessary concepts [56]. For example, research has shown that people believe
AI agents will perform better than humans [36], including themselves [62]. As users’ perceptions
change over time [71], with every interaction, users must overcome the evaluation and execution
gulfs to create accurate mental models. Further, prior work showed people form mental models
of AI systems without personally having interacted with them such as forming mental models
about robots seen in the media, without necessarily having interacted with them [8]. Jakesch et al.
showed that user mental models about large language models are hindered by flawed heuristics of
discerning AI-generated texts and human-generated texts [34], which can lead to risks including
over-reliance of misleading information [72]. A mismatch between the human’s mental model and
the true error boundary can lead to sub-optimal decisions such as: the human trusts the AI even
when it makes an erroneous output and the human does not trust the AI even when it makes a
correct output. These decisions can lower productivity and/or accuracy [9], which in turn result in
frustration and abandonment of the technology.
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Researchers have worked to support users in building accurate mental models with explainable
AI (XAI) and transparency in AI systems as surveyed in [1, 6, 19, 29]. For example, Lim et al. found
that explanations describing why the system behaved a certain way led to better understanding
of the system [45]. In a visual question-answering context, showing counterfactual examples
effectively supported users’ mental models [3]. Nourani et al. suggested that designers of intelligent
systems provide guidance for users, as un-directed use of a system can lead to erroneous mental
models [57]. Among different types of explanations, many XAI studies have shown the benefits
of ‘example-based explanation’, which shows AI predictions for different input examples [16, 21].
Social transparency in which the system provides insights into how other users interacted with the
system have found to be also effective in understanding the AI systems [13].
Transparency approaches privileges ‘seeing without knowing’ in which seeing inside an AI

system does not necessarily mean understanding its behavior [4]. To address this, researchers
have argued that dynamically interacting with the system rather than observing is critical to truly
understand how systems behave [61]. Many HCI and CSCW researchers have supported this idea
and proposed related concepts such as ‘interactive explanations’ or ‘explanatory debugging’, which
the system explains the reasons for its outputs to the end-user, who can then correct and refine
inputs back to the system [40, 47, 53, 67]. For example, Liu et al. tested an interactive interface
that enabled users to experiment with counterfactual examples of a given instance and observe
changes in AI predictions, which led to an increase in the human perception of the usefulness
of AI assistance [47]. Many tools that support users this interactive analysis of AI models have
been developed [7, 37, 49, 66]. Motivated by these prior works, we leveraged the concept of testing
different input examples of an AI system as a means of enhancing user mental models of AI systems.

2.2 Social Information around AI Systems
People are constantly exposed to other people’s experiences and knowledge of AI systems in a
variety of ways, such as through social media, news sources, other internet sources, and everyday
life. Research has shown that people are influenced by mental models that are from other users, i.e.
social information [28, 32, 55, 70]. Another related concept is the Theory of Mind [11], or the idea
that humans try to make sense of each other’s mental processing. Therefore, social information
is essentially a shared mental model that evolves through collaboration with other users [5]. If
multiple individuals (e.g., team members) have a shared mental model of their shared task and
of each other, then they are able to accurately predict others’ needs and behaviors and thereby
increase overall performance.

However, social information can be inaccurate or incomplete, due to biases, outdated experiences,
limited numbers of interactions, and differences in memory and computation limitations amongst
individuals [9, 10, 44]. This inaccurate social information can inhibit a user from developing
accurate mental models. Our study investigates the impact of inaccurate social information, as well
as whether validation can help users improve their mental models.While prior research has attended
to the effects of inaccurate social information from a wide range of domains and angles (e.g., news
media [48, 58], general knowledge [52]), there is a significant gap in research exploring the impact
of such information on user mental models of AI systems, as well as approaches for mitigating
any adverse effects. Our study aims to bridge this gap and suggest a validation approach, which
empowers users to test different input examples to determine the accuracy of social information.

2.3 Natural Language Systems for Workflow Automation
Our work focuses on a goal-oriented natural language interface that enables users to automate
a workflow by integrating data and business applications. Many systems for this purpose have
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been developed (e.g., IBM App Connect1, Zapier2, IFTTT3, Microsoft Power Automate4, Google
AppSheet5) and they share a common goal: supporting a low- or no-code interface that a user with
little or no technical expertise can create trigger-action or rule-based programs easily. Natural
language interfaces have been increasingly developed for this task automation purpose [30, 33, 60]
and other similar programming tasks [43, 75], database query processing [2], IoT and mashup
configurations [46], data visualizations [64], and web page designs [38]. Natural language interfaces
are intuitive, natural, and easier to learn compared to traditional interfaces that require users to
use programming languages and software protocols to operate the system [31, 74].

One caveat of natural language interfaces is that it is difficult for the users to formulate accurate
mental models such as what types of input sentences the system can reliably parse [35]. One reason
is that a natural language system is usually a complex system with many interacting rules and
structures. Natural language systems can generate very different outputs with even slight variations
in the input. There are almost infinite ways to write a natural language utterance compared to the
limited number of interactions a user uses to test the system and develop their mental models. In
comparison to GUIs, natural language systems often lack visual signifiers to understand system
capabilities. Our work tries to address this problem by giving a user the opportunity to validate the
mental models of others through testing sample utterances.

There is a lack of empirical research to incorporate the validation experience in a natural language
system and evaluate its impact on building accurate mental models. Through this user study, we
provide empirical knowledge on how people validate social information by experimenting with
different natural language utterances. Prior work also identified repair strategies [35], which
describes how participants repaired their utterances to produce the desired outputs. In our study,
we identify strategies participants used for validation and discuss similarities and differences with
the repair strategies.

3 Context
3.1 Goal Oriented Flow Assistant (GOFA)

Fig. 2. An example trigger-action program represented by a flow diagram. A natural language utterance
“when there’s a new incident on ServiceNow, send a message on Slack, and send an email on Gmail’ will
generate the program.

This research was conducted in the context of a natural language system that automates trigger-
action workflows, titled Goal Oriented Flow Assistant (GOFA). When a user writes a trigger-action
program in a natural language utterance, the GOFA system identifies applications (e.g., Gmail),
trigger events, actions (e.g., create), and objects (e.g., mail). Then, it creates a short program that is
represented by a flow diagram. Fig. 2 illustrates an example flow diagram generated by an utterance
‘when there’s a new incident on ServiceNow, send a message on Slack, and send an email on
Gmail’. The system identifies ServiceNow, Slack, and Gmail as applications, a new incident as a
1https://www.ibm.com/cloud/app-connect
2https://zapier.com
3https://ifttt.com/
4https://powerautomate.microsoft.com/digital-process-automation/
5https://about.appsheet.com/home/
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trigger event, send as an action, and a message and an email as objects. Technical details of the
system can be found in a prior work [12]. We describe example behaviors of GOFA using the
following conceptual model [27]. We selected this model because it was flexible and adaptable to
other AI systems, including ours, and was similar to well-known XAI types (e.g., global and local
explanations), making it easier to understand and base on XAI research.

Global behavior (how the system works such as how it parses utterances and composes a flow in
general).

• Divide and conquer: The system splits and parses the utterance into small parts
• Part of speech: The system looks for and uses certain parts of speech (e.g., noun, verb,
preposition) to generate the flow.

• Ordering: The ordering of the generated flow components corresponds to the proper semantics
of the utterance rather than left-to-right.

Local behavior (how the system makes an individual decision or correct/incorrect workflow within a
single interaction).

• Structuring words: The system knows certain words that are used to create the structure of
the flow (e.g., comma, ‘when’)

• Near each other: The application name, object, and operation need to be placed near each
other to be recognized as one component in the diagram but can have filler words in between.

• Simple input: The system works best when the right amount of information is given without
extraneous details to generate a correct flow.

• Writing style: Active or passive voice should not matter as long as they convey the same
meaning. Same with tenses.

Knowledge distribution (what knowledge the system has access to and how the system uses that
knowledge).

• Keyword matching: The system attempts to match keywords in the input utterance to a
set of applications, operations, and object names. It requires at least one application in the
utterance.

• Knowledge graph: The system has knowledge about applications (e.g., Slack), objects that
those applications can handle (e.g., message), and operations allowed on those objects (e.g.,
send).

• Substitution: The system substitutes an application if there’s a mismatch between an applica-
tion that the user wrote and the knowledge base.

3.2 Social Information
The social information we used was randomly sampled from a dataset collected in a prior study [13].
In this prior study, researchers ran a study on MTurk where 252 participants used the GOFA system
to generate trigger-action workflows and answered open-ended survey questions about their mental
models such as how they think the system translated their text input to the flow diagram, and any
words or structures they used in their input sentences that they believe helped them to successfully
generate goal flows. Researchers categorized mental models into several themes, which can be
mapped to global behavior, local behavior, and knowledge distribution aspects of GOFA. We aimed
to capture this diverse range of mental models in our dataset of social information by randomly
selecting at least one piece of information from each theme identified in this prior work. As a result,
we selected 12 pieces of social information, each corresponding to one of the conceptual model
types listed in section 3.1. The full list of social information we used in this experiment is reported
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in Appendix A. To improve readability, we fixed grammar mistakes, clarified ambiguous words
(e.g., pronouns), or shortened comments that were too long, without changing their meaning.

Each piece of social information was labeled as correct or incorrect. The accuracy of each piece
of social information was cross-checked with the system engineers. Another researcher who did
not participate in the information sampling process independently annotated the information into
one of the mental model types after learning their definitions and achieved a perfect agreement
except for one, in which we reached a consensus after a discussion.

4 Formative Study
We conducted a formative study to understand how participants perceive and interact with our
system. We recruited 6 individuals from within an international enterprise with diverse roles and
locations. Participants completed the user study followed by a semi-structured interview. During
the interview, we asked questions about their feedback about the study in general, including tasks
and our interface designs. They were asked to think aloud during the tasks. The study including
the interview took 66.5 minutes on average (𝑆𝐷 = 18.42).

Based on the participants’ feedback, we iterated on the design of the experiment, survey questions,
and interface, such as clarifying the instructions, replacing ambiguous social information, and
controlling for timing. Participants wanted more context information in addition to the social
information, thus we included the goal flows for the tasks prior participants were working on while
writing each piece of social information (e.g., User A’s goal flow and User A’s comment in Fig. 4).
We initially provided five attempts per task but reduced it to three attempts based on participants’
feedback, except for the onboarding task in which participants preferred to have all five attempts.

5 Method
In this study, we planned to investigate the impact of accurate and inaccurate social information
on mental models. We also aimed to explore the effects of the validation experience where people
get opportunities to validate social information accuracy by testing various utterances. Specifically,
we had four research questions (RQs):

• RQ1. Validation: How does the validation experience impact users’ mental models?
• RQ2. Social information: How does the accuracy of social information influence users’
mental models?

• RQ3. Task performance: How does the validation experience impact users’ task perfor-
mance?

• RQ4. Collaborative comment: How do users collaborate in constructing and sharing social
information?

To answer these research questions, we designed and conducted a between-subject experiment.
We designed two treatment conditions, the validation condition showed social information followed
by the opportunity to validate the information, and the social information condition showed social
information without the validation experience. Additionally, we designed a control condition that
does not present social information, eliminating the need for any validation process as well. To
avoid the straw man fallacy, which is oversimplifying the control condition to make it easier to
find a significant effect, we included an interaction task instead of the validation step where a
participant submitted natural language utterances to generate a given goal flow.
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Fig. 3. End-to-end user study flow. Following an onboarding tutorial and a pre-task survey, participants were
randomly assigned to one of three experimental conditions for the main tasks: validation, social information,
and control conditions. One main task consisted of a series of steps, in which each condition had all or some
of the steps. In the validation condition, for example, a participant were given a piece of social information
with the corresponding workflow and made an initial judgment about whether the social information is
correct or not (social information), validated the social information by testing various sample utterances and
made a final judgment (validation task), and revised the given social information to make it more accurate
(collaborative comment). Participants completed three main tasks in total, with each showing a unique piece
of social information (repeat main tasks). Upon completion, they completed a post-task survey and a final
task.

5.1 Study Procedures
We conducted an online experiment that lasted approximately 30 minutes. The overall study flow
is illustrated in Fig. 3. We describe the procedure for the validation condition below, as the social
information and control conditions are small variations of the validation condition.

(1) Consent form: A participant entered our website and signed a consent form. In the consent
form, we explained that they would be interacting with a natural language system to generate
small programs in English. We explained that they did not need to have any experience with
programming to participate because all of their responses should be in natural language.

(2) Onboarding: A participant read a guided tour that explained how to interact with our
natural language system. Then, they were given a playground interface where they can
familiarize themselves with the tool by completing an onboarding interaction task. In this
task, a participant was asked to write a sentence that generates a specific visual goal flow
within 5 chances.

(3) Pre-task survey: They completed a pre-task survey that included questions about their
initial mental models of the system.

(4) Main tasks: A participant completed three main tasks. In each main task, the participant
was presented with one piece of social information (e.g., ‘user A’s comment’ in Fig. 4) with
an associated goal flow (e.g., ‘user A’s goal flow’), randomly chosen from the dataset. Within
a main task, they were asked to complete the following steps (Fig. 4):
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Fig. 4. An abbreviated example of our task interface in the validation condition. For each task, a participant
reads a piece of social information (e.g., User A’s comment) randomly selected by the system. In the subsequent
steps, the participant makes an initial judgment about whether they think the information is accurate or not
(step 1), validates the social information by testing different sample flows (step 2), makes a final judgment
about the accuracy (step 3), and revises the given social information to make it more accurate (step 4).
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• Step 1. Initial accuracy judgment: The participant assessed the accuracy of the social
information, determining whether they think it correctly or incorrectly described the
system’s behavior as well as indicating their confidence level regarding their choice.

• Step 2. Validation: The participant generated three different sample flows to test the
accuracy of the provided social information, which does not necessarily need to be the
same as the given goal flow. For example, a participant may generate a flow that changes
the order of the applications to validate social information about ordering. They had to use
up all three attempts before proceeding to the next task to avoid a situation where they
skip this step.

• Step 3. Final accuracy judgment: We asked the same set of questions as in step 1 to
measure any changes in their accuracy judgments after the validation experience.

• Step 4. Collaborative comment: The participant edited the social information in a way
that’s more accurate and valuable for other users and rated how much they were willing to
share their comments. They were unable to proceed if no change was made.

(5) Post-task survey: After completing three main tasks, they submitted a post-task survey
including questions about their mental models of the system. We asked an open-ended
question about their strategies of validation and repair in the validation and control condition,
respectively.

(6) Final interaction task: the participant completed a final task where they were asked to
write an utterance to generate a given goal flow within 3 attempts. We offered a small bonus
depending on their task success to increase participants’ motivation.

In the social information condition, we excluded validation-related steps (steps 2 and 3) in the
main task. This allowed us to assess the effects of the validation experience by comparing the
post-task survey results between the validation and the social information conditions. We designed
the control condition to represent a condition without social information, allowing us to investigate
the effects of social information by comparing treatment conditions and the control condition.
Therefore, we excluded steps 1, 2, and 3 in the main tasks for the control condition because there’s
no social information to judge accuracy or validate. Instead, the control condition had an interaction
task in which they were instructed to generate a given goal flow, which were the same workflow
presented in other conditions with the social information. This allowed us to avoid the straw man
fallacy, which is oversimplifying the control condition compared to treatment conditions. Then,
they wrote their own comments to share as in step 4. All three conditions repeated the main task
three times with randomized order, each task containing a unique social information (in treatment
conditions) or a workflow (in control condition).

We employed a pre-post study design, utilizing pre- and post-task surveys, to analyze the effects
of the interventions implemented in the main tasks, while mitigating the influence of confounding
factors arising from participants’ prior experience with similar AI or automation tools. To ensure
effective onboarding, we offered playground interactions, as measuring initial mental models
without such interactions would not make sense. We compensated up to $5, which consists of a
base payment of $4.7 (i.e., $9.4/hr) to all participants who completed the study, and a bonus ($0.3)
to participants who completed the final task successfully.

5.2 Participants
We recruited crowdworkers from Amazon Mechanical Turk (MTurk). Participants were eligible if
they were 18 years old or older, live in the US, have English as their primary language, and have not
participated in our study before. In order to receive quality responses, we invited participants whose
number of approved tasks was greater than 1000, whose HIT approval rate was greater than 98, and
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Table 1. We found no significant difference in education and AI-related experience of participants across
conditions. The number of participants who were associated with each condition is reported. The same goal
flows were used across all conditions.

Factors Range Validation Social Information Control

Education

High school degree or equivalent 0 0 1
Some college but no degree 2 1 2

Associates degree 2 1 0
Bachelors degree 9 8 8
Graduate degree 2 1 2

AI experience
I have heard about AI in the news, friends, or family 6 7 6

I closely follow AI-related news 5 2 3
I have some work experience and/or formal education related to AI 4 2 3

I have significant work experience related to AI 0 0 1

Table 2. Task designs. We counterbalanced the ordering of mental model types associated with each main
task. The goal flows remained consistent across conditions.

Task Instruction (for the validation condition) Goal flow

Onboarding interaction task

Imagine you’re hosting an event and attendees are reserving their
spot through Eventbrite, an event management app. You want to
receive email notifications on Gmail whenever someone new
registers for the event. This scenario is described by the goal flow.
Please enter a sentence in plain English to generate the goal flow.

Main task 1 (Global behavior) Previously, a participant tried to construct the following goal flow
using our system. They subsequently shared a comment about the
system behavior such as how they believe the system parsed their
sentence, and which specific words or structures were helpful in
generating a correct flow. (followed by social information)

Main task 2 (Local behavior)

Main task 3 (Knowledge distribution)

Final interaction task Please enter a sentence in plain English to generate the goal flow.

who passed our English proficiency test [20]. Participants were instructed to use a desktop or laptop
computer for the experiment. We analyzed data from 39 participants in total, which consists of 15
participants in the validation condition, 11 participants in the social information condition, and
13 participants in the control condition, guided by [17]. The number of participants were slightly
different across conditions because we filtered out unqualified participants after recruitment, such as
those who failed the attention-check questions in the survey or clearly didn’t follow the instructions.
No significant differences in educational background and AI-related experience were found among
the participants across conditions, as we reported in Table 1.

5.3 Tasks
As shown in Table 2, the study consists of an onboarding task, three main tasks, and a final task,
each with a goal flow. In the treatment conditions, three pieces of social information were randomly
selected from our dataset (see Appendix A), one from each global behavior, local behavior, and
knowledge distribution type. For example, the first main task introduced one social information that
explains the global behavior of the system, the second main task introduced one social information
that explains the local behavior of the system, and the third main task introduced one social
information that explains a knowledge distribution behavior of the system. The ordering of the
type was counterbalanced.
To provide more context, as was requested in the formative study, we also provided the corre-

sponding goal flow the social information provider was working on in the prior study [13]. Due
to the random selection, a participant could read either accurate or inaccurate social information
in each task, resulting in a possible range of 0 to 3 encounters of accurate social information per
participant. In the control condition, participants were instructed to generate the same goal flows.
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5.4 Measures
We used survey questions to measure participants’ mental models, accuracy judgments, collabora-
tion to build shared mental models, and strategies to generate workflows. We analyzed system logs
to investigate task performance and collect sentences they submitted to generate workflows.

5.4.1 Mental models. A participant rated their agreements on a 7-point Likert scale on ten state-
ments that describe system behavior correctly or incorrectly [13]. We grouped the questions into
three types, global behavior, local behavior, and knowledge distribution types, based on the def-
initions described in a prior work [27]. For example, a participant rated their agreement on the
following statement, ‘all of the keywords that appear in the goal flow must be in the sentence using
the exact same wordings to generate the correct flow.’ This statement incorrectly describes the
system behavior and was associated with the keyword matching type. We reversed participants’
ratings of incorrect statements (i.e. reverse coding) to ensure that higher values consistently indicate
better mental models of the system behavior. We calculated the average to assess the overall mental
model scores, as well as the scores for each type. A full list of statements is listed in Appendix B.

5.4.2 Accuracy judgments and confidence. As a supplementary measure to explain participants’
mental model changes, we measured whether participants felt the social information was correct
or incorrect immediately after reading the social information (e.g. Step 1 initial judgment in Fig. 4)
in the treatment conditions, as well as after the validation experience (e.g. Step 3 final judgment in
Fig. 4) in the validation condition. Along with each judgment, we also asked their confidence level
of their judgments on a 7-point Likert scale. Note that we didn’t reveal the actual correctness of
social information to the participants.

5.4.3 Collaborative comment and sharing intent. A participant edited the given social information
from other users in treatment conditions or wrote their own comment in the control condition,
namely collaborative comment. Through their collaborative comments, we aimed to investigate
how people collaborate to write and refine social information and thereby construct shared mental
models. After writing a comment, the participant rated how much they were willing to share their
comments on a 7-point Likert scale.

5.4.4 Validation and repair strategies. For participants in the validation condition, we asked an
open-ended question about their validation strategy in the post-task survey: ‘What strategies
did you use to generate different flows for testing the accuracy of other users’ comments?’. For
participants in the control condition, we asked an open-ended question about their repair strategy
in the post-task survey: ‘What strategies did you use to generate a correct flow?’.

5.4.5 Task performance. We measured participants’ performance in the final task using two mea-
sures.

• Number of attempts: The number of attempts to complete the final task, either until they
achieved the correct flow or until they reached the maximum limit of 3 attempts. For instance,
if they failed to generate a correct flow, the number of attempts recorded would be 3.

• Success rate: We calculated whether a participant generated a correct flow in the final
task (success: 1, fail: 0) divided by the number of attempts. This will take into account how
successful and efficient the participant has performed in the final task.

5.5 Analysis
5.5.1 Statistical analysis. When analyzing the effect of experimental conditions on the final task
performance, we built a linear model with the experimental condition as an independent variable
and task performance as a dependent variable. When analyzing the effect of the conditions on
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mental model scores, we used the mental model score computed from the post-task survey scores as
a dependent variable. We then constructed a linear model with the condition as the independent
variable and the pre-task mental model score as a covariate to adjust for their initial state. To
analyze the effect of social information accuracy on mental model scores in treatment conditions, we
constructed linear mixed models using the post-task mental model score as a dependent variable, the
number of tasks that contained accurate social information as a fixed-effect factor (ranges 0-3), the
pre-task mental model score as a covariate, and the experimental condition as a random-effect factor.
When analyzing the effects of other variables that were measured after each task (e.g., accuracy
judgment success, confidence, sharing intent), we used linear mixed models with the condition as
a fixed-effect factor. The task ID and Participant ID (PID) were random-effect factors to account
for intraclass correlation (i.e., between-cluster variance to the total variance controlled by random
intercept models [59]). In cases where we found a significant or marginally significant effect, we
conducted post hoc tests with Bonferroni corrections. We summarized statistical tests in Table 3.

Table 3. Statistical tests summary.We summarized primary statistical tests we conducted, listing variables (DV:
dependent variable, IV: independent variable, covariate, fixed/random-effect factors), model (LM: linear model,
LMM: linear mixed-effect model), analysis type (between/within-subjects analysis), data used, corresponding
research questions and sections.

RQ Section DV IV/Fixed Covariate Random Model Analysis Data used
1 6.1.1 Post-task mental model Condition Pre-task mental model N/A LM Between All conditions
1 6.1.2 Judgment success Time of judgment (step 1/3) N/A Task ID, PID LMM Within Validation condition
1 6.1.2 Judgment confidence Time of judgment (step 1/3) N/A Task ID, PID LMM Within Validation condition
2 6.2 Post-task mental model Num of accurate social info Pre-task mental model Condition LMM Within Validation, Social information
3 6.3 Num of attempts Condition N/A N/A LM Between All conditions
3 6.3 Success rate Condition N/A N/A LM Between All conditions
4 6.4 Sharing intent Condition N/A Task ID, PID LMM Between All conditions

5.5.2 Utterance analysis. Two researchers conducted the thematic analysis [14] to analyze utter-
ances submitted during the main tasks. First, researchers independently coded the utterances that
participants in the validation condition submitted during the validation step (i.e., validation) and the
utterances that participants in the control condition submitted to achieve a correct goal flow during
the interaction tasks (i.e., repair). During the analysis, we focused on how their utterances changed
from the previous attempt to understand their strategy of refining each utterance. Researchers
iteratively generated high-level themes, discussed the themes until a consensus was reached, and
created and refined a final coding schema. Researchers coded sample data (about 49%) and achieved
a Krippendorff’s alpha of 0.75, indicating a substantial agreement [39]. Researchers labeled the rest
of the data using the established schema and counted the number of participants who mentioned
each theme.

5.5.3 Validation and repair strategies analysis. Two researchers analyzed open-ended responses in
the post-task survey in which participants in the validation condition explained their validation
strategies and participants in the interaction condition explained their repair strategies. Following
the procedure of thematic analysis [14], researchers independently coded the data and generated
high-level themes. Researchers discussed their themes until a consensus was reached and created a
coding schema. Researchers iterated this process until they reached 100% agreement. Researchers
simply aimed for 100% agreement rather than reaching a good inter-rater reliability score in this
analysis due to the small size of the dataset [50]. Most of the themes we found from the utterance
analysis and the open-ended survey responses were similar, thus we report the aggregated list of
themes in Table 5.
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Table 4. Descriptive statistics of pre-task and post-task mental model scores overall and for each type for
all conditions. We reported the means and standard deviations in parentheses. Our findings indicated a
significant improvement in overall mental model scores in the validation condition, particularly regarding the
knowledge distribution type of the mental model.

Mental model score Validation condition Social information condition Control condition
Pre-task Post-task Pre-task Post-task Pre-task Post-task

Overall 4.51 (± 0.3) 4.99 (± 0.59) 4.83 (± 0.26) 4.66 (± 0.38) 4.58 (± 0.42) 4.68 (± 0.39)
Global behavior 3.83 (± 0.77) 4.63 (± 1.42) 4.45 (± 0.52) 4.32 (± 0.9) 3.96 (± 0.78) 4.58 (± 0.98)
Local behavior 4.58 (± 0.48) 4.88 (± 0.81) 4.73 (± 0.39) 4.59 (± 0.64) 4.69 (± 0.55) 4.73 (± 0.62)

Knowledge distribution 4.77 (± 0.64) 5.28 (± 0.67) 5.11 (± 0.70) 4.91 (± 0.52) 4.77 (± 0.73) 4.67 (± 0.58)

5.5.4 Collaborative comments analysis. We followed the thematic analysis method [14] to analyze
the open-ended collaborative comments, i.e. edits of others’ shared social information, obtained from
the treatment conditions. Two researchers independently coded and extracted high-level themes
from the entire dataset. They then iteratively discussed the themes and updated a coding schema.
Using the final schema, researchers achieved substantial agreement [39] (Krippendorff’s alpha of
0.84) We counted the frequency of each theme and reported the results in Table 9. Additionally,
two researchers independently annotated the accuracy of each collaborative comment and made a
substantial agreement [39] (Krippendorff’s alpha = 0.78).

6 Results
In this section, we explain the effects of validation (RQ1) and the accuracy of social information
(RQ2) on user mental models. Additionally, we investigated the effects on task performance (RQ3)
and explore how people collaborate to build and share more accurate social information (RQ4).

6.1 Validation (RQ1)
6.1.1 Mental models. The validation experience significantly improved the overall user mental
models. We found a significant effect of the condition on the changes in mental model scores
(𝑝 < .001). Post hoc tests demonstrated that participants who had chances to validate the accuracy
of social information significantly improved their mental models compared to the participants in
the social information who had no chance to validate them (𝑝 < .05) and compared to the control
condition with marginal significance (𝑝 < .1).

Among the three types of mental models, we found that the knowledge distribution type showed
statistically significant differences across conditions (𝑝 < .01), while the other types were non-
significant. Post hoc tests revealed the participants who had chances to validate the accuracy of
social information significantly improved their knowledge distribution type of mental models
compared to the participants in the social information condition (𝑝 < .05) and the control condition
(𝑝 < .05). The descriptive statistics are summarized in Table 4.

6.1.2 Accuracy judgments and confidence. To learn more about the effects of the validation ex-
perience, we investigated how participants’ accuracy judgments and confidence changed before
and after the validation step in the validation condition only. Mental models may improve not
only when participants successfully identify inaccurate social information but also when they have
increased confidence in accurate social information. We created an ‘judgment success’ variable,
where a participant’s successful judgment of the social information’s accuracy resulted in a ‘success’
(1) outcome, and an incorrect judgment led to a ‘fail’ (0) outcome. We discovered that their accuracy
judgment success were not significantly different before and after the validation in which only 4
participants out of 15 participants changed their judgments after validation. However, confidence
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Table 5. Validation and repair strategies mentioned in the post-task survey or identified in the utterance
analysis. The number of participants who mentioned each theme in the post-task survey and the number of
utterances that were refined using each theme are noted in subsequent columns for the validation condition
(V) and the control condition (C).

Theme Description Example Survey Response Example Utterance Survey Utterance
V C V C

Describing
the goal flow

Described the goal flow us-
ing the provided keywords,
ordering, and structure as
is with subjective adjust-
ments.

I simply used the application name and the ac-
tion below it (the goal flow) to generate the flow.

“servicenow incident, jira issue, domino
mailmessage” (1st attempt)

2 6 48 39

Variations Tested alternate variations
of wordings and phrases
such as synonyms but the
overall meaning was simi-
lar

I tried a couple of different descriptions until
one style got it right the first time

“When a service now incident is created, create an
issue on jira and then create a mail message on
domino.” (1st attempt) –> “Whenever an incident
is created on servicenow, create an issue on jira
and then create amail message on domino.” (2nd
attempt)

3 0 41 7

Simplifying
text

Shortening the utterance
by removing words

I just tried to use natural-sounding language
with a clear sequence of steps, minimizing the
amount of unnecessary text used.

“When a message is created on slack, then create
a file in dropbox” (1st attempt) –> “a message
in slack, create file in dropbox” (2nd attempt)

1 1 11 12

Reordering Rearranged parts of the ut-
terance and words

I would rearrange how I said specific phrases
that the comments would give.

“when a raw message created in slack creates
files in dropbox” (1st attempt) –> “create files
in dropbox when a rawmessage created in slack”
(2nd attempt)

2 1 14 9

Polishing Cosmetic edits such as fix-
ing typos, grammar, adding
spaces, capitalization

N/A “Whwn raw messagw created in slack, dropbox
create files” (1st attempt) –> “When raw mes-
sage created in slack, dropbox create files” (2nd
attempt)

N/A N/A 5 2

Adding words Added new keywords in-
cluding new application
names, verbs, transition
words

N/A “When there is an incident create issue andmail”
(1st attempt) –> “When the incident created in
servicenow create an issue in Jira and create a
mail in domino” (2nd attempt)

N/A N/A 27 23

Confirmation
or counterex-
ample

Follow/replicated what is
described in the social in-
formation and attempted
opposite variations

I tried to use the same thought process as
other users if I agreed with them and hence
same/similar syntax or commands. If I disagreed
with a user. I would use the opposite of what
they considered better to prove them wrong.

N/A 3 0 N/A N/A

Following an
example flow

Used the example utterance
that we provided when de-
scribing the goal flow

I followed the sentence structure in the given
example to generate an input sentence describ-
ing the events in the goal flow.

N/A 3 2 N/A N/A

Others No sufficient detail, used
commonsense, don’t know,
no strategy

I don’t know how to answer this question N/A 1 3 N/A N/A

ratings in their accuracy judgments significantly increased after the validation (average confidence
ratings of the initial judgment: 5.31 (±1.79) vs. final judgment: 5.98 (±0.48), 𝑝 < .05).

6.1.3 Validation utterances and strategies. We found similar themes of strategies between the
validation and the control conditions, which we listed in Table 5. In the post-task survey, one
unique strategy that participants reported to validate social information was testing confirmation
and counterexamples that aligns with or opposes the provided social information. Most participants
in the control condition (46.15%) reported that they focused on describing the given goal flow by
utilizing the provided keywords and structure, assuming that these were the most effective methods
for writing an utterance.

6.2 Social information (RQ2)
As shown in Table 4, we found a small negative effect on usermental models in the social information
condition, likely because the incorrect social information negatively undermined participants’
understanding of the system behavior. However, the effect was not statistically significant; The
number of accurate social information had no significant impact on themental models of participants
in the social information and the validation conditions (𝑝 = .50).

To further investigate the possible reasons contributing to this finding, we compared the actual
accuracy of the social information and the participants’ accuracy judgments after reading the social
information. As shown in Table 6 and Table 7, we found that the majority of the social information
accuracy was correctly judged. For example, participants in the social information condition were
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Table 6. Contingency table between accuracy and
people’s judgment in the social information con-
dition.

Social information Accurate Inaccurate
Judged Accurate 14 8
Judged Inaccurate 3 8

Table 7. Contingency table between accuracy and
people’s initial judgment in the validation condi-
tion.

Social information Accurate Inaccurate
Judged Accurate 25 10
Judged Inaccurate 2 8

able to judge the accuracy of the social information in 66.67% of the cases (22 out of 33 judgments).
Participants in the validation condition were able to judge the accuracy of the social information
in 73.33% of the cases (33 out of 45 initial judgments). However, analyzing the data on a per-user
basis indicated that 69.23% of participants in treatment conditions incorrectly judged the social
information accuracy at least once (10/15 participants in the validation condition, 8/11 participants
in the social information condition). Drawing from this observation, we can anticipate inaccurate
social information exerts a smaller influence on their mental models than we anticipated. This
aligns with our findings in section 6.1 in which we found that the validation opportunity didn’t
change their accuracy judgment but rather their confidence about their judgment. Other methods
besides validation need to be devised as well to assist users in judging social information accuracy.

6.3 Task Performance (RQ3)
80% of participants in the validation condition successfully completed the final task, taking an
average of 1.8 (± 0.86) attempts out of 3 available attempts. In comparison, 64% of participants in
the social information condition succeeded and it took them an average of 2.36 (± 0.81) attempts.
In the control condition, 54% of participants succeeded, and they took an average of 2.15 (± 0.99)
attempts. However, we did not find statistically significant differences in the success rate (𝑝 = .32)
as well as in the number of attempts (𝑝 = .27) across the conditions. One possible explanation for
this finding is that the validation experience primarily improved the knowledge distribution type
of mental models as we explained in section 6.1, thus it might not have enhanced all aspects of
mental models that lead to significant improvements in task performance.

6.4 Collaborative Comments (RQ4)
In this section, we examined the collaborative comments provided by participants after each task.
Through qualitative analysis, we found that participants in treatment conditions employed a set of
strategies when they had a chance to edit the social information in a way that is more accurate and
valuable for other users. As listed in Table 9, we found that paraphrasing the social information was
the most frequent strategy employed by participants overall, particularly in the social information
condition (55%). Participants who had a chance to validate the social information showed more
diverse approaches to editing the social information including paraphrasing (24%), opposing the
social information (20%), appending new information (24%), or adding more examples (16%).

The experimental conditions significantly affected participants’ willingness to share their com-
ments with other users (𝜒2 (2) = 8.92, 𝑝 < .05). Post hoc tests revealed that participants in the
social information condition (4.21 ± 1.76) rated their sharing intention significantly lower than
participants in the control condition (6.05 ± 1.39) (𝑝 < .01). This finding indicates that participants
who read social information were reluctant in sharing their comments, possibly due to the fact
that they encountered different viewpoints from other users and became less confident about their
system understanding. Other comparisons didn’t show significant differences; for example, the
sharing intention between participants in the validation condition (5.29 ± 1.94) and the control
condition (6.05 ± 1.39) was not significantly different (𝑝 = .4). This could be interpreted that
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Table 8. The count of accurate, inaccurate, and N/A labels for the collaborative comments across or within
individual conditions.

Accuracy Total count Validation condition Social information condition Control condition
Correct 70 26 23 21
Incorrect 39 17 10 12
N/A 8 2 0 6

Table 9. Editing strategies for collaborative comments. Edited parts in the example comments are italicized.
In the frequency column, we calculated the number of themes that occurred in treatment conditions overall
and within a specific condition such as in the validation condition (V) and the social information condition
(S).

Strategy Description Original Comment Collaborative Comment Frequency
Paraphrasing Rewording, clarifying, or simpli-

fying the comment while retain-
ing the original meaning.

The system took the order of the sentence and syn-
tax to create a logical flow from left to right.

The system uses the order of the flow from left to
right.

29
(37.18%)
[V:11,
S:18]

Opposing Revising, removing, or correcting
inaccurate parts.

When the sentences were constructed in the passive
voice, it seemed to work the best.

The sentences can be constructed in an active or
passive voice. Both can lead to good results.

15
(19.24%)
[V:9, S:6]

Adding infor-
mation

Adding new information such
as what they did, how they
dealt with the problem, and what
would happen otherwise.

Words that implied an order were useful, like ’when’
or ’then’. It helped the program generate a correct
sequence.

Words that implied an order could be useful, like
’when’ or ’then’.However, the order of flow separated
by a comma also worked.

14
(17.95%)
[V:11,
S:3]

Elaborating
with exam-
ples

Adding specific keywords, utter-
ances, or output examples

The system used the verbs to create actions and the
nouns as the subjects.

The system used the verbs to create actions and the
nouns as the subjects. Use a preposition to indicate
the app. For example, ‘create a lead in salesforce.’

8
(10.26%)
[V:7, S:1]

Adjusting the
scope

Changing the scope of the com-
ment to be more or less assertive.

At the end, I was starting to learn to simplify the
sentence, and thinking fewer words worked better
even if the sentence did not look right.

At the end, I was starting to learn to simplify the
sentence, and thinking fewer words worked better
even if the sentence did not look right as long as it
included keywords in the correct order.

5 (6.42%)
[V:2, S:3]

Summarizing Conclude with their takeaways
or interpretations in addition to
the comment.

For instance, for Domino, after I changed ‘mailmes-
sage’ to ‘mail’, it generated the right flow. So correct
wording was very important.

For instance, for Domino, after I changed ‘mailmes-
sage’ to ‘mail’, it generated the right flow. So correct
wording was very important. I think it is impor-
tant to understand the proper phrasing for certain
processes, especially considering the first part of the
workflow.

3 (3.85%)
[V:1, S:2]

New opinion Rewriting the comment on a new
topic that is different from the
original comment.

The system added extra flow for no reason. The AI
is just making it’s own assumptions.

The system mixed up the flow order of my tasks. 2 (2.57%)
[V:2, S:0]

Others Other miscellaneous comments
that are not meaningful

I had to alter some of my words so that the system
would understand it. For instance, for Domino, after
I changed ‘mailmessage’ to ‘mail’, it generated the
right flow. So correct wording was very important.

My solution didn’t work, so I have no comment to
improve on this.

2 (2.57%)
[V:2, S:0]

participants who had chances to validate social information showed a higher intention to share
their comments, resulting in a non-significant difference compared to the control group.
Participants wrote accurate comments more than inaccurate comments overall, as shown in

Table 8. In contrast to our expectations that participants will write and share more accurate
comments when they had an opportunity to validate or interact with the system, we didn’t find
significant differences across conditions in the accuracy of comments (𝜒2 (4) = 0.22, 𝑝 = .99). These
findings indicate that participants demonstrated an ability to write accurate comments regardless
of the opportunity for validation or interaction. For example, participants selectively preserved or
wrote the information they deemed accurate rather than including the information that they think
is uncertain or questionable (e.g., ‘adjusting the scope theme’ in Table 9).

7 Discussion
7.1 Findings and Implications
To review our findings, we showed the positive effects of validation experience on mental models,
particularly in the knowledge distribution type of mental models. The validation experience
increased participants’ confidence in their understanding of how the system behaves. We also
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found that the validation experience encourages people to share their mental models with other
users. Participants exhibited a strong ability to discern accurate and inaccurate social information.
Therefore, inaccurate social information didn’t significantly harm their mental models. Through
qualitative analysis, we identified strategies that participants utilized to validate social information
as well as to collaboratively build more accurate shared mental models.

7.1.1 Validation. The experience of validating social information showed a positive impact on the
development of mental models that align with the actual system behavior compared to the social
information condition that had no validation process or control condition. Dual-process theories
argue that human cognition and reasoning can be partitioned into two types of processes, the fast,
effortless, and automatic process that often relies on heuristics (type 1) and the slow, reflective,
and deliberative process that involves critical thinking (type 2) [22]. The validation experience
encouraged individuals to engage in the type 2 process through cognitive forcing functions (e.g.,
instructions, visual feedback), fostering more logical thinking and analysis regarding the behavior
of the AI system and thereby leading to a more accurate understanding of mental models. However,
in reality, individuals might be more inclined to rely on the type 1 process by trusting what
others say about an AI system due to time and effort constraints. It would be beneficial to explore
mechanisms and interface designs that encourage users to engage in validation practices, similar
to cognitive forcing functions [15]. For instance, incorporating a playground feature within an
online community or encouraging posters to include their utterances or code snippets can facilitate
validation practices while reading social information.

While we found positive effects of validation, the effect was limited to the knowledge distribution
type of mental models. This is somewhat different from prior work in a word game where those
who won and lost did not have significant differences in knowledge distribution [27]. One possible
reason is that in our context, users find it easiest to validate the system’s knowledge by adding,
removing, and varying keywords to observe whether the system’s knowledge base can detect the
changes. This implies that depending on the user ability to construct utterance examples to prove or
disapprove social information within a short time can affect how much and what they learn through
the validation process. More research needs to be done to support various validation strategies
that would impact all types of mental models regardless of users’ ability of generating effective
inputs. For instance, using large language models to generate example validation utterances can be
a potential direction of research to assist users in the validation step. The global behavior of an
AI system such as whether the system splits and parses the sentence into small parts is difficult
to validate using input-output pairs identified in the validation phase. Rather, visualizing a parse
tree or explaining how the system internally breaks down an utterance can be more useful to
understand the global behavior of the system.
We found that participants increased their confidence in the accuracy judgment of the social

information, which may have positively contributed to the improvement in mental models after
validation experience. However, we found that users’ binary accuracy judgments, either correct
or incorrect, remained largely unchanged, with only a small fraction of participants altering their
judgments after validation. As to why we see this result, it is possible that people had cognitive
biases to their initial mental models such as anchoring bias. According to Tversky and Kahneman’s
theory, when people make judgments, they often start with an initial value and then adjust it, but
these adjustments are typically not significant enough [68]. Although the validation experience had
strengthened their confidence in their initial accuracy judgments, it may not have been sufficient
to alter the direction of their judgments from incorrect to correct or vice versa. Future work can
explore ways to mitigate these biases such as offering validation task before they form initial mental
models or providing alternative mental models to reduce the impact of the anchor.
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7.1.2 Social information. We did not find that inaccurate social information had a significant impact
on shaping mental models. According to belief formation theories [26], beliefs formed through
direct observation or experience (i.e., descriptive belief) are stronger than beliefs formed through
information by some sources including social information (i.e., informational belief) because people
rarely question their own senses from direct experience. In our study, participants were given a
chance to form their initial mental models during the onboarding phase, and it is possible that
this experience might have overridden the effects of the social information they encountered
subsequently. Future research could explore the effects of social information on individuals who
have not yet formed any mental models. Moreover, individuals might have felt it difficult to fully
understand others’ mental models through a single piece of social information from an unknown
user, which can result in limited social influence to change their initial opinions. Prior works have
found that social influence could become stronger if the information is provided by an expert (the
expert effect) or if there is a presence of clusters of individuals sharing similar opinions (the majority
effect) [52]. Therefore, we encourage future work to explore the effects of social information by
varying the credibility and the number of people who mention the information in a longer-term
experiment.

When participants were given the opportunity to revise social information through the collabo-
rative comment step, we found that most participants across conditions were able to write correct
comments by removing parts of the comments that they were not confident with. A small portion
of participants still ended up writing inaccurate comments after the validation process, and one
possible reason for this is that they might have failed to validate the social information correctly
such as only creating examples that confirms the incorrect social information.

7.1.3 Validation and repair strategies. We identified strategies that participants utilized to validate
social information and the repair strategies they used in the interaction task in the control condition
(see Table 5). While there’s a significant improvement of mental models in the validation condition
compared to the control condition, we found that the strategies participants used in validation
were similar to the strategies they used during the interaction task. One potential difference could
lie in the motivation underlying these activities. One is driven by an accuracy motivation to obtain
more accurate mental models of the system through testing their hypothesis related to social
information, while the other is characterized by a goal-oriented motivation to achieve a correct
outcome. When participants were queried about their mental models, those who had engaged in
validation activities with accuracy motivation felt more confident in their mental models compared
to those who focused solely on completing the tasks. This highlights the importance of fostering
accuracy motivation when designing AI systems that require accurate mental models. For instance,
AI systems can incorporate activities or training materials that encourage users to accurately
understand the system’s behavior before using the system for their goals.

7.2 Generalizability
Our research may have broader implications beyond the specific AI system we investigated, which
generates task workflows from natural language utterances. Like our system, many AI systems are
black box models, lacking transparency in their decision-making processes, which increases the
amount of inaccurate mental models created and shared by people. For example, large language
models have several characteristics that pose challenges for transparency, such as their complexity,
proprietary nature, and massive size [44]. While many users actively share their mental models
around these technologies, they can easily become obsolete and flawed as the technology is
constantly and rapidly evolving [44]. Moreover, users may interact with algorithms through
applications such as social media or news recommendation platforms that are built on many
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interacting algorithms, making it even more difficult to understand or explain its underlying
system [24, 54].

To supplement the limitations of the transparency approach, our study highlights the importance
of a user’s role to critical think and validate the social information they receive. In comparison
to the example-based explanations in XAI research [16, 69], which provide example cases as
explanations, validation experience encourages users to make and test their own input examples to
deeply understand the system. While AI systems, including large language models, are becoming
increasingly versatile, it is challenging to provide universal and comprehensive examples to explain
the system; therefore, allowing users to freely formulate their input examples to validate specific
mental models is recommended. Developers and practitioners can support this role by providing
playground interfaces or sandbox environment where users can experiment with different inputs,
parameters, and data to understand how the system actually works and shape their mental models
accordingly. Building an online community where people share their validation experiences can
also be useful. However, we want to acknowledge that validation approach has its own limitations
such as the difficulty of coming up with effective inputs and the interpreting the outputs generated.
To support this, AI models may present systematic comparisons between the models’ outputs for
different user-generated inputs and explain why there are differences, which may enhance users’
mental models. We encourage future work to devise advanced methods to help users validate social
information and gain better understanding of the AI systems.

7.3 Limitations
There are several limitations to this study. First, we tested one specific natural language system and
a specific task (i.e., trigger-action program) to answer our research questions and our findings may
not generalize to all other AI systems and tasks. We encourage future research to explore other
types of AI systems in diverse systems and tasks. Second, the social information used in this study
consisted of only short and easily understandable text-based information, which was collected from
a preliminary experiment. While the information was effective to answer our research question, real-
world social information may consist of ambiguous, long, or contain a variety of other contextual
information, such as images or references. We recommend experimenting with more diverse types
and formats of social information in future studies. Third, our participants have at least heard about
AI in the news or in their social circle and they might already have formed some knowledge around
AI systems. We recruited participants from MTurk and our participants were likely unfamiliar
with workflow automation tools, which might have posed challenges in completing the tasks. We
recommend conducting further research with a larger and more diverse population with varying
AI-related backgrounds or experience in automation tools.

8 Conclusion
We investigated the impact of social information accuracy and validation experience on mental
models in the context of a natural language system that generates workflows. We designed a
between-subjects online experiment with 39 crowdworkers. Participants were randomly assigned
to one of the three conditions; the validation condition included both social information followed
by the validation step, the social information condition involved social information only, and the
control condition had neither social information nor validation. The results indicated the positive
impacts of the validation experience on mental models, specifically in the knowledge distribution
type. Participants demonstrated the capacity to differentiate between accurate and inaccurate social
information, thus mitigating the effects of inaccurate information on their mental models. We
discussed design implications and future research on how to improve validation practices in social
platforms and AI systems.
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A Social Information Data
We sampled social information from survey responses collected in the prior study. In the preliminary
study, researchers asked open-ended questions to inquire about their mental models.

Mental
Model

Social Information Accuracy

Global
behavior

The system detects transitions in my words and breaks my texts down into
different parts, then connects different parts as separate small tasks.

Correct

The system used the verbs to create actions and the nouns as the subjects. Correct
The system used my words and did not pay attention to the order in which
I typed them in. It jumbled up the order.

Incorrect

The system took the order of the sentence and syntax to create a logical
flow from left to right.

Incorrect

Local
behavior

Words that implied an order were useful, like ‘when’ or ‘then’. It helped
the program generate a correct sequence.

Correct

I used the name of the object and action keywords close to the service
names so that the system could provide me with the most accurate result.

Correct

At the end, I was starting to learn to simplify the sentence and thinking
less words worked better even if the sentence did not look right.

Incorrect

When the sentences were constructed in the passive voice, it seemed to
work the best.

Incorrect

Knowledge
distribution

I had to alter some of my words so that the system would understand it. For
instance, for Domino, after I changed ‘mailmessage’ to ‘mail’, it generated
the right flow. So correct wording was very important.

Correct

The system looked for keywords such as app names to know which app is
being referenced and then also recognized keywords like create for making
new objects in those apps.

Correct

Keeping the sentence logical while sticking to the syntax. If the goal flow
said ‘create’, then use ‘create’. When I tried to use ‘write’, it messed up.

Incorrect

The system added extra flow for no reason. The AI is just making its own
assumptions.

Incorrect
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B Mental model survey questions

We summarize survey questions used to measure mental models, grouped by the types of mental
models each item is associated with. Note that in the surveys, the questions were not labeled with
the headings and the correctness. The same set of questions was used in pre-task and post-task
surveys.

Mental
Model Type

Question (Rate the following statements describing our system that you
interacted with, using a scale of 1: Strongly disagree – 7: Strongly agree)

Accuracy

Global
behavior

The system breaks down the input sentence into separate words and uses
certain parts of speech (e.g., nouns, verbs, or prepositions) to generate a
flow.

Correct

The ordering of phrases in the input sentence is always going to relate to
the ordering of the generated flow components.

Incorrect

Local
behavior

The system detects certain trigger words to create the structure of the flow
(e.g., ‘if’).

Correct

The system works best when an application, object, and operation words
for one flow component are placed near each other in the input sentence.

Correct

The systemworks best with the shortest sentence, even if it is grammatically
incorrect such as lacking verbs.

Incorrect

The system requires verb tenses to be consistent in the sentence to generate
a correct flow.

Incorrect

Knowledge
distribution

The system attempts to match words in the input sentence with application,
operations, and object names that the system knows.

Correct

All of the keywords that appear in the goal flow must be in the sentence
using the exact same wordings to generate the correct flow.

Incorrect

The system has knowledge about frequently used flows, so it may suggest
an alternative flow that differs from the one described in the input sentence.

Incorrect

The system requires application names (e.g., ‘Gmail’) to be in the input
sentence to generate the correct flow.

Correct
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